On stochastic calculus with respect to q -Brownian motion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

Stochastic Calculus with Respect to Free Brownian Motion and Analysis on Wigner Space

We deene stochastic integrals with respect to free Brownian motion, and show that they satisfy Burkholder-Gundy type inequalities in operator norm. We prove also a version of It^ o's predictable representation theorem, as well as product form and functional form of It^ o's formula. Finally we develop stochastic analysis on the free Fock space, in analogy with stochastic analysis on the Wiener s...

متن کامل

Brownian Motion and Stochastic Calculus

This note is about Doob decomposition and the basics of Square integrable martingales Contents 1 Doob-Meyer Decomposition 1 2 Square Integrable Martingales 4 Brownian Motion and Stochastic Calculus Continuout Time Submartingales Usually it’s su¢ ce to only discuss submartingales by symmetry in de…nition and techniques are the same. 1 Doob-Meyer Decomposition Doob-meyer decomposition clears the ...

متن کامل

Stochastic integration with respect to the fractional Brownian motion

We develop a stochastic calculus for the fractional Brownian motion with Hurst parameter H > 2 using the techniques of the Malliavin calclulus. We establish estimates in Lp, maximal inequalities and a continuity criterion for the stochastic integral. Finally, we derive an Itô’s formula for integral processes.

متن کامل

Fractional Brownian motion: stochastic calculus and applications

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this note we will survey some facts about the stochastic calculus with respect to fBm using a pathwise approach and the techniques of the Malliavin calculus. Some applications in turbulence and finance will be discussed. Math...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2018

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2017.08.019